Гипергеометрические функции - определение. Что такое Гипергеометрические функции
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Гипергеометрические функции - определение

СЕМЕЙСТВО СПЕЦИАЛЬНЫХ МАТЕМАТИЧЕСКИХ ФУНКЦИЙ
Гипергеометрический ряд; Гипергеометрическое уравнение; Гипергеометрические функции
Найдено результатов: 237
Гипергеометрические функции         

аналитические функции, определяемые для |z|<1c помощью гипергеометрического ряда (См. Гипергеометрический ряд). Название "Г. ф." было дано Дж. Валлисом (1650). Г. ф. являются интегралами гипергеометрического уравнения

z (1-z)ω" + [γ-(1 + α+ βz]ω'-αβω = 0.

Это уравнение имеет три регулярные особые точки 0, 1 и ∞ и является канонической формой уравнений гипергеометрического типа. Важнейшие специальные функции математического анализа являются интегралами уравнений гипергеометрического типа (например, Шаровые функции) или уравнений, возникающих из гипергеометрических путём слияния их особых точек (например, Цилиндрические функции). Теория уравнений гипергеометрического типа явилась основой для возникновения важной математической дисциплины - аналитической теории дифференциальных уравнений. Между различными Г. ф.

ω = F (α, β; γ; z)

имеется большое число соотношений, например:

F (α, 1; γ, z) = (1-z)-1 F (1, γ -α; γ; z/(z-1)).

Лит.: Уиттекер Э. Т. и Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.

Гипергеометрический ряд         

ряд вида

Г. р. был впервые изучен Л. Эйлером (1778). Разложение многих функций в бесконечные ряды представляет собой частные случаи Г. р. Например:

(1 + z) n = F (-n, β; β; -z),

ln (1 + z) = zF (1, 1; 2; -z),

Г. р. имеет смысл, если γ не равно нулю или целому отрицательному числу; он сходится при |z| < 1. Если, кроме того, γ-α-β >0, то Г. р. сходится и при z = 1. В этом случае справедлива формула Гаусса:

F (α, β; γ; 1) = Γ(γ)Γ(γ-α-β)/Γ(γ-α)Γ(γ-β),

где Г (z) - Гамма-функция. Аналитическая функция, определяемая для |z| < 1 с помощью Г. р., называется гипергеометрической функцией (См. Гипергеометрические функции) и играет важную роль в теории дифференциальных уравнений.

сужение         
Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции
СУЖ'ЕНИЕ, сужения, мн. нет, ср. Действие и состояние по гл. сузить
-суживать
2 и сузиться
-суживаться
2. Сужение пищевода.
Сужение функции         
Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции
Сужение функции на подмножество X её области определения D\supset X — функция с областью определения X, совпадающая с исходной функцией на всём X.
сужение         
Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции
ср.
1) Процесс действия по знач. глаг.: сужать, сузить, сужаться, сузиться.
2) Состояние по знач. глаг.: сужаться, сузиться.
3) Узкое место.
Функции параболического цилиндра         
  • График функций Эрмита с отрицательным целым индексом
  • График функций Эрмита с положительным индексом
Функции Эрмита; Функция Эрмита; Эрмита функции; Функции Вебера
Фу́нкции параболи́ческого цили́ндра (функции Вебера) — общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа, уравнение Пуассона, уравнение Гельмгольца и др. в системе координат параболического цилиндра.
Коллизия хеш-функции         
АМБРОЗИЯ
Коллизия хэш функции; Коллизия хэш-функции
Колли́зия хеш-фу́нкции — два различных входных блока данных x и y для хеш-функции H таких, что H(x) = H(y).
Дифференцирование сложной функции         
Правило дифференцирования сложной функции; Производная сложной функции
Цепное правило (правило дифференцирования сложной функции) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных.
Бесселя функции         
  • График функции Бесселя первого рода J
  • График функции Бесселя второго рода N
  • ''n'' {{=}} 0, 1, 2}}
  • ''n'' {{=}} 0, 1, 2}}
Функция Бесселя; Бесселевы функции; Бесселя функции; Функция Неймана; Уравнение Бесселя; Функции Неймана; Дифференциальное уравнение Бесселя

Цилиндрические функции 1-го рода; возникают при рассмотрении физических процессов (теплопроводности, диффузии, колебаний и пр.) в областях с круговой и цилиндрической симметрией; являются решениями Бесселя уравнения (См. Бесселя уравнение).

Б. ф. Jp порядка (индекса) р, - ∞ < p < ∞, представляется рядом

сходящимся при всех х. Её график при х > 0 имеет вид затухающего колебания; Jp (x) имеет бесчисленное множество нулей; поведение Jp (x) при малых |х| даётся первым слагаемым ряда (*), при больших х > 0 справедливо асимптотическое представление

в котором отчётливо проявляется колебательный характер функции. Б. ф. "полуцелого" порядка р = n + 1/2 выражаются через элементарные функции; в частности,

Б. ф. Jp pnx/l) (где μpn - положительные нули Jp (x), р > -1/2) образуют ортогональную с весом х в промежутке (0, l) систему (см. Ортогональная система функций).

Функция J0 была впервые рассмотрена Д. Бернулли в работе, посвященной колебанию тяжёлых цепей (1732). Л. Эйлер, рассматривая задачу о колебаниях круглой мембраны (1738), пришёл к уравнению Бесселя с целыми значениями р = n и нашёл выражение J"(x) в виде ряда по степеням х. В последующих работах он распространил это выражение на случай произвольных значений р. Ф. Бессель исследовал (1824) функции Jp (x) в связи с изучением движения планет вокруг Солнца. Он составил первые таблицы для J0(x), J1(x), J2(x).

Лит.: Ватсон Г. Н., Теория бесселевых функций, пер. с англ., ч. 1-2, М., 1949; Лебедев Н. Н., Специальные функции и их приложения, 2 изд., М.- Л., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции, функции Бесселя, функции параболического цилиндра, ортогональные многочлены, пер. с англ., М., 1966.

П. И. Лизоркин.

Функции Бесселя         
  • График функции Бесселя первого рода J
  • График функции Бесселя второго рода N
  • ''n'' {{=}} 0, 1, 2}}
  • ''n'' {{=}} 0, 1, 2}}
Функция Бесселя; Бесселевы функции; Бесселя функции; Функция Неймана; Уравнение Бесселя; Функции Неймана; Дифференциальное уравнение Бесселя
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:

Википедия

Гипергеометрическая функция

Гипергеометри́ческая фу́нкция (функция Гаусса) определяется внутри круга | z | < 1 {\displaystyle |z|<1} как сумма гипергеометрического ряда

F ( a , b ; c ; z ) = 1 + k = 1 [ l = 0 k 1 ( a + l ) ( b + l ) ( 1 + l ) ( c + l ) ] z k = 1 + a b c z 1 ! + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) z 2 2 ! + a ( a + 1 ) ( a + 2 ) b ( b + 1 ) ( b + 2 ) c ( c + 1 ) ( c + 2 ) z 3 3 ! + , {\displaystyle F(a,b;c;z)=1+\sum _{k=1}^{\infty }\left[\prod _{l=0}^{k-1}{(a+l)(b+l) \over (1+l)(c+l)}\right]z^{k}=1+{\frac {ab}{c}}{\frac {z}{1!}}+{\frac {a(a+1)\cdot b(b+1)}{c(c+1)}}{\frac {z^{2}}{2!}}+{\frac {a(a+1)(a+2)\cdot b(b+1)(b+2)}{c(c+1)(c+2)}}{\frac {z^{3}}{3!}}+\dots ,}

а при | z | > 1 {\displaystyle |z|>1}  — как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка z ( 1 z ) d 2 u d z 2 + ( c ( a + b + 1 ) z ) d u d z a b u = 0 , {\displaystyle z(1-z){\frac {d^{2}u}{dz^{2}}}+\left(c-(a+b+1)z\right){\frac {du}{dz}}-ab\,u=0,} называемого гипергеометрическим уравнением.

Что такое Гипергеометр<font color="red">и</font>ческие ф<font color="red">у</font>нкции - определени